25.02.2024

Микроскопия пэм. Методы просвечивающей электронной микроскопии. А также другие работы, которые могут Вас заинтересовать


микроскоп, электронный просвечивающий сокр., ПЭМ (англ. сокр., TEM ) — разновидность - высоковакуумный высоковольтный прибор, в котором изображение от ультратонкого объекта (толщиной порядка 500 нм и менее) формируется в результате взаимодействия пучка электронов с веществом образца при прохождении через него насквозь.

Описание

Принцип действия просвечивающего электронного микроскопа практически аналогичен принципу действия оптического микроскопа, только в первом используются магнитные линзы вместо стеклянных и электроны вместо фотонов. Пучок электронов, испускаемый электронной пушкой, фокусируется с помощью конденсорной линзы в маленькое пятно ∼2–3 мкм в диаметре на образце и после прохождения через образец фокусируется с помощью объективной линзы для получения проекции увеличенного изображения на специальном экране образца или детекторе. Очень важным элементом микроскопа является апертурная диафрагма, расположенная в задней фокальной плоскости объективной линзы. Она определяет контраст изображения и разрешающую способность микроскопа. Формирование контраста изображений в ПЭМ можно объяснить следующим образом. При прохождении через образец пучок электронов теряет часть своей интенсивности на рассеяние. Эта часть больше для более толстых участков или для участков с более тяжелыми атомами. Если апертурная диафрагма эффективно отсекает рассеянные электроны, то толстые участки и участки с тяжелыми атомами будут выглядеть как более темные. Меньшая апертура увеличивает контраст, но приводит к потере разрешения. В кристаллах упругое рассеяние электронов приводит к появлению дифракционного контраста.

Авторы

  • Вересов Александр Генрихович
  • Саранин Александр Александрович

Источник

  1. Handbook of microscopy for nanotechnology // Ed. by Nan Yao, Zhong Lin Wang. - Boston: Kluwer Academic Publishers, 2005. - 731 p.

Просвечивающая электронная микроскопия является одним из самых высокоразрешающих методов исследования. При этом просвечивающий электронный микроскоп (ПЭМ) представляет собой аналог традиционного оптического микроскопа. Аналогия заключается в том, что изменение траектории распространения потока оптических квантов под действием преломляющей среды (линз) подобно действию магнитных и электрических полей на траекторию движения заряженных частиц, в частности электронов. Подобие, с точки зрения фокусировки электронов и формирования изображения исследуемого объекта, оказалось настолько близким, что электронно-оптические колонны первых магнитных и электростатических ПЭМ рассчитывали с помощью зависимостей геометрической оптики.

В качестве фокусирующих линз в современных ПЭМ (рис. 15.2) используют заключенные в магнитопровод электромагнитные катушки, которые создают фокусирующие магнитостатические поля (рис. 15.3). Магнитопровод линзы выполняет две функции: повышает напряженность поля

Рис. 15.2.

  • 1 - электронная пушка; 2 - блок конденсорных линз; 3 - блок объективной линзы с объектодержателем; 4 - блок проекционных линз; 5 - экраны для визуализации изображения; 6- высоковольтный источник питания; 7- вакуумная система
  • (т. е. усиливает его фокусирующую способность) и придает ему форму, обеспечивающую формирование изображения, наиболее точно соответствующего объекту. В отличие от стеклянных линз преломляющую силу магнитной линзы легко меняют путем изменения тока возбуждения в обмотке. Благодаря этому увеличение, обеспечиваемое микроскопом, можно менять непрерывно от нескольких сотен до миллионов крат.

Рис. 15.3. Схема электромагнитной линзы электронного микроскопа: I - магнитопровод; 2 - катушка возбуждения магнитного поля;

3- поле, фокусирующее электронный поток

В ПЭМ образцы «рассматривают» на просвет. То есть их облучают электронным пучком и получают нужную информацию в виде изображения, сформированного с помощью прошедших сквозь образец электронов. Всякое изображение состоит из участков определенного размера, отличающихся яркостью. Эти отличия в ПЭМ возникают из-за того, что электроны, проходя сквозь плотную среду образца, рассеиваются в ней (частично поглощаются, изменяют направление движения и, как правило, теряют часть своей энергии). Причем угловое распределение электронов, прошедших сквозь образец, несет информацию о плотности образца, его толщине, элементном составе и кристаллографических характеристиках.

Рис. 15.4. Поглощение потока электронов в тонкопленочном аморфном образце, имеющем участок повышенной плотности: а - б - распределение плотности тока j

Рис. 15.5. Поглощение потока электронов в тонкопленочном аморфном образце переменной толщины: а - прохождение потока электронов сквозь образец; б - распределение плотности тока j в прошедшем сквозь образец электронном потоке

Так, участки, содержащие более тяжелые атомы, рассеивают электроны на большие углы и вызывают более эффективное их поглощение (рис. 15.4). Точно так же участки аморфного образца, имеющие большую толщину, в большей степени отклоняют и поглощают электроны, чем более тонкие участки (рис. 15.5). Если с помощью линз оптически сопрячь плоскость образца и плоскость приемника-преобразователя, на поверхности последнего возникнет увеличенное изображение.

Если образец является кристаллом или поликристаллом, взаимодействие электронного пучка, представляющего собой плоскую волну, с кристаллической решеткой приводит к возникновению дифракционной картины (рис. 15.6). Геометрия этой картины описывается известным из курса физики уравнением Вульфа-Брэгга и однозначно связана с кристаллографическими параметрами образца. Зная энергию облучающих электронов, можно установить эти параметры с высокой точностью. Для того чтобы получить увеличенное изображение такой картины (дифрактограммы), достаточно оптически сопрячь плоскость формирования дифракционной картины (она располагается за плоскостью образца) и плоскость приемника-преобразователя.


Рис. 15.6. Электронографические картины, полученные от монокристаллического (я) и поликристаллического (б) образцов

Для визуализации указанных изображений прошедшие электроны фокусируют на поверхности приемника-преобразователя с помощью системы линз (объективной, промежуточной и т. п.). При этом из всех электронов, прошедших через образец, выделяют либо электроны, рассеянные на большие углы, либо нерассеянные (реже для формирования изображения используют электроны, рассеянные на малые углы, - обычно при малоугловой дифракции). В первом случае на полученном изображении более темными выглядят участки, характеризующиеся малой рассеивающей способностью (это гак называемый темнопольный режим формирования изображения), а во втором - наоборот (светлопольный режим).

Принципиальная схема ПЭМ показана на рис. 15.7. Микроскоп состоит из электронной пушки и системы электромагнитных линз, образующих вертикально расположенную электронно-оптическую колонну, в которой поддерживается вакуум Ю -3 ч-10~ 2 Па. Осветительная система микроскопа включает в себя электронную пушку и двухлинзовый конденсатор. Электронная пушка, как правило, термоэмиссионная, состоит из катода (нагретая нить из W или LaB 6), эмиттирующего электроны, управляющего электрода (на него подается отрицательный относительно катода потенциал) и анода в виде пластинки с отверстием. Между катодом и анодом создается мощное электрическое поле с ускоряющим напряжением 100-150 кВ.

Следует заметить, что существует немногочисленный класс гак называемых сверхвысоковольтных микроскопов, в которых ускоряющее напряжение может достигать нескольких мегавольт. С увеличением скорости уменьшается длина волны (А. = h/mv - h /(2теU) 0 5) электрона. С уменьшением длины волны возрастает разрешающая способность оптической системы любого микроскопа, в том числе и ПЭМ. Рост ускоряющего напряжения, кроме того, приводит к увеличению проникающей способности электронов. При рабочих напряжениях 1000 кВ и более возможно изучение образцов толщиной до 5-10 мкм.

Рис. 15.7.

  • 1 - катод; 2 - анод; 3 - первый конденсор; 4 - второй конденсор;
  • 5 - корректор юстировки; 6 - гониометрический столик с объектодержателем;
  • 7 - апертурная диафрагма; 8 - секторная диафрагма; 9 - промежуточная линза;
  • 10 - проекционная линза; 11 - приемник-преобразователь;
  • 12 - диафрагма поля зрения; 13 - стигматор промежуточной линзы;
  • 14 - стигматор объективной линзы; 15 - объективная линза;
  • 16 - исследуемый объект; 17- стигматор второго конденсора;
  • 18 - диафрагма второго конденсора; 19 - диафрагма первого конденсора; 20 - управляющий электрод

Однако при исследовании материалов в высоковольтном ПЭМ нужно учитывать образование в его структуре радиационных дефектов типа пар Френкеля и даже комплексов точечных дефектов (дислокационных петель, вакансионных пор) при длительном экспонировании под высокоэнергетическим электронным пучком. Например, в алюминии пороговая энергия смешения атома из узла кристаллической решетки для электронного пучка составляет 166 эВ. Такие электронные микроскопы являются эффективным инструментом для изучения появления и эволюции радиационных дефектов в кристаллических твердых телах.

Проходя через отверстие анода, пучок электронов попадает в конденсоры и корректор юстировки, где электронный луч окончательно наводится на изучаемый образец. В ПЭМ посредством конденсорных линз регулируют и контролируют размер и угол облучения образца. Далее с помощью полей объективной и проекционных линз на поверхности приемника- преобразователя формируется информационное изображение.

Для микродифракционных исследований в состав микроскопа включают подвижную селекторную диафрагму, которая в этом случае заменяет апертурную. Для большей универсальности между объективной и промежуточной линзами в ПЭМ устанавливают дополнительную линзу. Она повышает резкость изображения во всем диапазоне увеличений. Основное же назначение линзы состоит в обеспечении быстрого перехода в режим электронографических исследований.

В качестве приемника-преобразователя может использоваться люминесцентный экран, где в слое люминофора происходит преобразование потока электронов в поток оптического излучения. В другом конструктивном исполнении приемник-преобразователь включает в себя чувствительную матрицу (секционированные микроканальные пластины, матричные электронно-оптические преобразователи, ПЗС-матрицы (сокр. от «прибор с зарядовой связью»)), в которой поток электронов преобразуется в видеосигнал, а последний выводится на экран монитора и используется для создания ТВ-изображения.

Современные ПЭМ обеспечивают разрешение до 0,2 нм. В связи с этим появился термин «просвечивающая электронная микроскопия высокого разрешения». Полезное увеличение конечного изображения может достигать 1 млн крат. Интересно отметить, что при таком огромном увеличении деталь структуры размером 1 нм на конечном изображении имеет размер только 1 мм.

Поскольку изображение формируется из электронов, прошедших сквозь образец, последний из-за низкой проникающей способности электронов должен иметь малую толщину (обычно десятые и сотые доли микрометра). Существует эмпирическое правило, согласно которому толщина образца не превышает значения требуемой разрешающей способности более чем на порядок (для получения сверхвысокого разрешения 0,2 нм это правило уже не работает). Вследствие этого образец готовят в виде фольги или гонкой пленки, называемой репликой.

В зависимости от того, как образец готовится, его исследование может быть прямым, косвенным или смешанным.

Прямой.метод дает наиболее полную информацию о структуре объекта. Он заключается в утонении исходного массивного образца до состояния тонкой пленки, которая прозрачна или полупрозрачна для электронов.

Утонение образца - трудоемкий процесс, поскольку применение механических устройств на последней стадии невозможно. Обычно образец разрезают на миллиметровые пластинки, которые предварительно механическим путем полируют до толщины ~50 мкм. Затем образец подвергают прецизионному ионному травлению или электролитической полировке

(двусторонней или с обратной стороны от исследуемой поверхности). В результате он утоняется до толщины ~ 100- 1000 А.

Если образец имеет сложный состав, то надо учитывать, что скорость эрозии различных материалов при ионном распылении и электрополировке различна. В итоге получаемый слой дает прямую информацию не обо всем исходном образце, а лишь о чрезвычайно тонком его приповерхностном слое, оставшемся после травления.

Однако эта ситуация не критична, если сам образец представляет собой тонкую структуру, например, выращенную эпитаксиальную пленку или нанодисперсный порошок.

В некоторых случаях, относящихся, как правило, к неметаллическим пластичным материалам типа органики и биологических объектов, тонкие пленки для исследований отрезают от массивного исходного образца с помощью специальных устройств, называемых ультрамикротомами (рис. 15.8). Ультрамикротом представляет собой миниатюрную гильотину с прецизионным (обычно пьезокерамическим) приводом перемещения образца под нож. Толщина слоя, срезаемого прибором, может составлять единицы нанометров.


Рис. 15.8.

В ряде случаев пленки получают также путем физического напыления в вакууме на водорастворимые подложки (NaCl, КС1).

При исследованиях методом просвечивающей (трансмиссионной) электронной микроскопии можно изучать дислокационную структуру материалов (см., например, рис. 2.28), определять векторы Бюргерса дислокаций, их тип и плотность. Также с помощью ПЭМ возможно исследование скоплений точечных дефектов (в том числе и радиационных), дефектов упаковки (с определением их энергии образования), двойниковых границ, границ зерен и субзерен, выделений вторых фаз (с идентификацией их состава) и т. д.

Иногда микроскопы снабжают специальными приставками (для нагрева или растяжения образца в процессе исследования и пр.). Например, при использовании приставки, позволяющей растягивать фольгу в процессе исследования, наблюдают эволюцию дислокационной структуры при деформации.

При исследовании методом ПЭМ возможно проведение и микродиф- ракционного анализа. В зависимости от состава материала в зоне изучения получают диаграммы (электронограммы) в виде точек (образцы - монокристаллы или поликристаллы с зерном, превышающим зону исследования), сплошные или состоящие из отдельных рефлексов. Расчет этих элек- тронограмм аналогичен расчету рентгеновских дебаеграмм. С помощью микродифракционного анализа можно также определять ориентировки кристаллов и разориентировки зерен и субзерен.

Просвечивающие электронные микроскопы с очень узким лучом позволяют по спектру энергетических потерь электронов, прошедших через изучаемый объект, проводить локальный химический анализ материала, в том числе анализ на легкие элементы (бор, углерод, кислород, азот).

Косвенный метод связан с исследованием не самого материала, а тонких пленочных реплик, получаемых с его поверхности. На образце формируют тонкую пленку, до мельчайших подробностей повторяющую поверхностную структуру образца, и затем ее отделяют с помощью специальных методик (рис. 15.9).

Метод реализуют либо напылением в вакууме на поверхность образца пленки углерода, кварца, титана или других веществ, которую потом сравнительно просто отделяют от образца, либо оксидируют поверхность (например, медь), получая легкоотделяемые оксидные пленки. Еще более перспективно использование реплик в виде полимерных или лаковых пленок, наносимых в жидком виде на поверхность шлифа.

Для косвенного метода не требуются дорогостоящие высоковольтные микроскопы. Однако он значительно уступает прямому методу в информативности. Во-первых, исключается возможность исследовать кристаллографические характеристики образца, а также оценивать особенности его фазового и элементного состава.

Рис. 15.9.

Во-вторых, разрешение получаемого изображения обычно хуже. Полезное увеличение таких изображений ограничено точностью самой реплики и достигает в лучшем случае (для углеродных реплик) (1-2) 10 5 .

Кроме того, возможно появление искажений и артефактов в процессе изготовления самой реплики и отделения ее от исходного образца. Все это ограничивает применение метода. Многие задачи, связанные с исследованием косвенным методом, в том числе фрактогра- фия, в настоящее время решаются методами растровой электронной микроскопии.

Отметим, что метод осаждения тонкого слоя на поверхность образца применяется и при прямом исследовании утоненных объектов. В этом случае создаваемая пленка обеспечивает увеличение контраста формируемого изображения. На поверхность образца напыляют хорошо поглощающий электроны материал (Аи, Мо, Си) под острым углом так, чтобы он конденсировался больше на одной стороне выступа, чем на другой (рис. 15.10).

Рис. 15.10.

Смешанный метод иногда применяют при исследовании гетерофазных сплавов. В этом случае основную фазу (матрицу) изучают с помощью реплик (косвенный метод), а частицы, извлеченные из матрицы в реплику, исследуют прямым методом, в том числе с помощью микродифракции.

При этом методе реплику перед отделением разрезают на мелкие квадратики, а затем образец протравливают по режиму, обеспечивающему растворение материала матрицы и сохранение частиц других фаз. Травление проводят до полного отделения пленки-реплики от основы.

Особенно удобен смешанный метод при изучении мелкодисперсных фаз в матрице при их малой объемной доле. Отсутствие у реплики собственной структуры позволяет исследовать дифракционные картины от частиц. При прямом методе такие картины выявить и отделить от картины для матрицы крайне сложно.

В связи с развитием нанотехнологии и особенно методов получения ультрадисперсных и наноразмерных порошков (фуллероидов, НТ и др.) данный метод обеспечил высокий интерес исследователей к ПЭМ. Подвергаемые исследованию ультрадисперсные и наноразмерные частицы высаживают на очень тонкую и практически прозрачную для электронных лучей мембрану, после чего помещают в колонну ПЭМ. Таким образом, можно наблюдать их структуру непосредственно - практически так же, как в обычном оптическом микроскопе, только с несравнимо более высоким разрешением.

Электр о нный микроск о п (англ. - electron microscope)этоприбор для наблюдения и фотографирования многократно (до 1·10 6 раз) увеличенного изображения объектов, в котором вместо световых лучей используются пучки электронов, ускоренных до больших энергий (30 - 100 кэВ и более) в условиях глубокого вакуума.

Просвечивающий электронный микроскоп (ПЭМ) обладают самой высокой разрешающей способностью, превосходя по этому параметру световые микроскопы в несколько тысяч раз. Так называемый предел разрешения, характеризующий способность прибора отобразить раздельно мелкие максимально близко расположенные детали объекта, у ПЭМ составляет 2 - 3 A°. При благоприятных условиях можно сфотографировать отдельные тяжёлые атомы. При фотографировании периодических структур, таких как атомные плоскости решёток кристаллов, удаётся реализовать разрешение менее 1 A°.

Для определения структуры твердых тел необходимо использование излучения с длиной волны λ, меньшей, чем межатомные расстояния. В электронном микроскопе с этой целью используют электронные волны.

Длина волны де Бройля λ B для электрона, движущегося со скоростью V

где p – его импульс, h - постоянная Планка, m 0 - масса покоя электрона, V – его скорость.

После простых преобразований получаем, что длина волны де Бройля для электрона, движущегося в ускоряющем однородном электрическом поле с разностью потенциалов U , равна

. (1)

В выражениях для λ Б не учитывается релятивистская поправка, существенная лишь при больших скоростях электронов V >1·10 5 В.

Величина λ Б очень мала что позволяет обеспечивать высокую разрешающую способность электронного микроскопа.

Для электронов же с энергиями от 1 эВ до 10 000 эВ длина волны де Бройля лежит в пределах от ~1 нм до 10 −2 нм, то есть в интервале длин волн рентгеновского излучения . Поэтому волновые свойства электронов должны проявляться, например, при их рассеянии на тех же кристаллах, на которых наблюдается дифракция рентгеновских лучей. [

Современные микроскопы имеют разрешающую способность в (0.1 – 1) нм при энергии электронов (1·10 4 – 1·10 5) эВ, что делает возможным наблюдение групп атомов и даже отдельных атомов, точечных дефектов, рельефа поверхности и т.д.

Просвечивающая электронная микроскопия

В электронно-оптическую систему просвечивающего электронного микроскопа (ПЭМ) входят: электронная пушка И и конденсор 1, предназначенные для обеспечения осветительной системы микроскопа; объективная 2, промежуточная 3 и проекционная 4 линзы, осуществляющие отображение; камера наблюдения и фотографирования Э (рис.1).

Рис.1. Ход лучей в ПЭМ в режиме наблюдения изображения

сточником электронов в электронной пушке служит вольфрамовый термоэмиссионный катод. Конденсорная линза позволяет получить на объекте пятно диаметром в несколько мкм. С помощью отображающей системы на экране ПЭМ формируется электронно-микроскопическое изображение объекта.

В плоскости, сопряженной с объектом, объективная линза формирует первое промежуточное изображение объекта. Все электроны, исходящие из одной точки объекта, попадают в одну точку сопряженной плоскости. Затем с помощью промежуточной и проекционной линз получают изображение на флуоресцирующем экране микроскопа или фотопластине. Это изображение передает структурные и морфологические особенности образца.

В ПЭМ используют магнитные линзы. Линза состоит из обмотки, ярма и полюсного наконечника, концентрирующего магнитное поле в малом объеме и повышающего тем самым оптическую силу линзы.

ПЭМ обладают самой высокой разрешающей способностью (PC), превосходя по этому параметру световые микроскопы в несколько тысяч раз. Так называемый предел разрешения, характеризующий способность прибора отобразить раздельно мелкие максимально близко расположенные детали объекта, у ПЭМ составляет 2 – 3 A°. При благоприятных условиях можно сфотографировать отдельные тяжёлые атомы.При фотографировании периодических структур, таких как атомные плоскости решёток кристаллов, удаётся реализовать разрешение менее 1 A°. Столь высокие разрешения достигаются благодаря чрезвычайно малой длине волны де Бройля электронов. Оптимальным диафрагмированием удаётся снизить сферическую аберрацию объектива, влияющую на PC ПЭМ, при достаточно малой дифракционной ошибке. Эффективных методов коррекции аберраций в не найдено. Поэтому в ПЭМ магнитныеэлектронные линзы(ЭЛ), обладающие меньшими аберрациями, полностью вытеснили электростатические ЭЛ. Выпускаются ПЭМ различного назначения. Их можно разделить на 3 группы:

    упрощённые ПЭМ,

    ПЭМ высокого разрешения,

    ПЭМ с повышенным ускоряющим напряжением.

1. Упрощённые ПЭМ предназначены для исследований, в которых не требуется высокая PC. Они более просты по конструкции (включающей 1 конденсор и 2 – 3 линзы для увеличения изображения объекта), их отличают меньшее (обычно 60 – 80 кВ) ускоряющее напряжение и более низкая его стабильность. PC этих приборов – от 6 до 15. Другие применения - предварительный просмотр объектов, рутинные исследования, учебные цели. Толщина объекта, которую можно «просветить» электронным пучком, зависит от ускоряющего напряжения. В ПЭМ с ускоряющим напряжением 100 кВ изучают объекты толщиной от 10 до нескольких тыс. A°.

2. ПЭМ с высокой разрешающей способностью (2 – 3 Å) – как правило, универсальные приборы многоцелевого назначения (рис.2, а). С помощью дополнительных устройств и приставок в них можно наклонять объект в разных плоскостях на большие углы к оптической оси, нагревать, охлаждать, деформировать его, осуществлять рентгеновский структурный анализ, исследования методами электронографии и пр. Ускоряющее электроны напряжение достигает 100 – 125 кВ, регулируется ступенчато и отличается высокой стабильностью: за 1 – 3 мин оно изменяется не более чем на 1 – 2 миллионные доли от исходного значения. В его оптической системе (колонне) создаётся глубокий вакуум (давление до 1·10 -6 мм рт. ст.). Схема оптической системы ПЭМ – на рис.2, б. Пучок электронов, источником которых служит термокатод, формируется в электронной пушке и затем дважды фокусируется первым и вторым конденсорами, создающими на объекте электронное «пятно», диаметр которого пятна можно изменять от 1 до 20 мкм. После прохождения сквозь объект часть электронов рассеивается и задерживается апертурной диафрагмой. Не рассеянные электроны проходят через отверстие диафрагмы и фокусируются объективом в предметной плоскости промежуточной линзы. Здесь формируется первое увеличенное изображение. Последующие линзы создают второе, третье и т. д. изображения. Последняя линза формирует изображение на флуоресцирующем экране, который светится под воздействием электронов

Рис. 2 а. ПЭМ: 1 – электронная пушка; 2 – конденсорные линзы; 3 – объектив; 4 – проекционные линзы; 5 – световой микроскоп, дополнительно увеличивающий изображение, наблюдаемое на экране: 6 – тубус со смотровыми окнами, через которые можно наблюдать изображение; 7 – вы-соковольтный кабель; 8 – ваку-умная система; 9 – пульт управ-ления; 10 – стенд; 11 – высоко-вольтный источник питания; 12 – источник питания линз.

Рис. 2 б. Оптическая схема ПЭМ. 1 – катод V-образной формы из вольф-рамовой проволоки (разогревается проходящим по нему током до 2800 К); 2 – фокусирующий цилиндр; 3 – анод; 4 – первый (короткофокусный) конденсор, создающий уменьшенное изображение источника электронов; 5 – второй (длиннофокусный) кон-денсор, который переносит умень-шенное изображение источника элек-тронов на объект; 6 – объект; 7 – апертурная диафрагма; 8 – объектив; 9, 10, 11 – система проекционных линз; 12 – катодолюминесцентный экран, на котором формируется конечное изображение.

Увеличение ПЭМ равно произведению увеличений всех линз. Степень и характер рассеяния электронов неодинаковы в различных точках объекта, так как толщина, плотность и химический состав объекта меняются от точки к точке. Соответственно изменяется число электронов, задержанных апертурной диафрагмой после прохождения различных точек объекта, а следовательно, и плотность тока на изображении, которая преобразуется в световой контраст на экране. Под экраном располагается магазин с фотопластинками. При фотографировании экран убирается, и электроны воздействуют на фотоэмульсионный слой. Изображение фокусируется изменением тока, возбуждающего магнитное поле объектива. Токи других линз регулируют для изменения увеличения ПЭМ.

3. ПЭМ с повышенным ускоряющим напряжением (до 200 кВ) предназначены для исследования более толстых объектов (в 2 – 3 раза толще), чем обычные ПЭМ. Их разрешающая способность достигает 3 – 5 Å. Эти приборы отличаются конструкцией электронной пушки: в ней для обеспечения электрической прочности и стабильности имеются два анода, на один из которых подаётся промежуточный потенциал, составляющий половину ускоряющего напряжения. Магнитодвижущая сила линз больше, чем в ПЭМ с ускоряющим напряжением 100 кВ, а сами линзы имеют увеличенные габариты и вес.

4. Сверхвысоковольтные электронные микроскопы (СВЭМ) – крупногабаритные приборы (рис.3) высотой от 5 до 15 м, с ускоряющим напряжением 0,50 – 0,65; 1 – 1,5 и 3.5 МВ.

Для них строят специальные помещения. СВЭМ предназначены для исследования объектов толщиной от 1·до·10 мкм. Электроны ускоряются в электростатическом ускорителе (так называемом ускорителе прямого действия), расположенном в баке, заполненном электроизоляционным газом под давлением. В том же или в дополнительном баке находится высоковольтный стабилизированный источник питания. В перспективе – созданию ПЭМ с линейным ускорителем, в котором электроны ускоряются до энергий 5 – 10 МэВ. При изучении тонких объектов PC СВЭМ ниже, чем у ПЭМ. В случае толстых объектов PC СВЭМ в 10 – 20 раз превосходит PC ПЭМ с ускоряющим напряжением 100 кВ. Если же образец аморфный, то контраст электронного изображения определяется толщиной и коэффициентом поглощения материала образца, что наблюдается, например, при изучении морфологии поверхности с помощью пластиковых или углеродных реплик. В кристаллах, кроме того, имеет место дифракция электронов, что позволяет определять структуру кристалла.

В

Рис.4. Положение диафрагмы Д при светлопольном (а ) и темнопольном (б ) изображениях: П - прошедший луч; D - дифрагированный луч; Обр - образец; И - электронная пушка

ПЭМ можно реализовать следующие режимы работы:

    изображение формируется прошедшим пучком П, дифрагированный пучок D отсекается апертурной диафрагмой Д (рис.4, а ), это - светлопольное изображение;

    апертурная диафрагма Д пропускает дифрагированный D пучок, отсекая прошедший П, это - темнопольное изображение (рис.4, б );

    для получения дифракционной картины задняя фокальная плоскость объективной линзы фокусируется на экране микроскопа (рис.4). Тогда на экране наблюдается дифракционная картина от просвечиваемого участка образца.

Для наблюдения изображения в задней фокальной плоскости объектива устанавливается апертурная диафрагма, в результате уменьшается апертура лучей, формирующих изображение, и повышается разрешение. Эта же диафрагма используется для выбора режима наблюдения (см. рис.2 и 5).

Рис.5. Ход лучей в ПЭМ в режиме микродифракции Д - диафрагма; И - источник электронов; Обр - образец; Э – экран; 1 - конденсорная, 2 - объективная, 3 - промежуточная, 4 -проекционная линзы

лина волны при напряжениях, используемых в ПЭМ, составляет около порядка 1∙10 –3 нм, то есть много меньше постоянной решетки кристаллов а , поэтому дифрагированный луч может распространяться лишь под малыми углами θ к проходящему лучу (
). Дифракционная картина от кристалла представляет собой набор отдельных точек (рефлексов). В ПЭМ в отличие от электронографа можно получить дифракционную картину с малого участка объекта, используя диафрагму в плоскости, сопряженной с объектом. Размер области может составлять около (1×1) мкм 2 . От режима наблюдения изображения к режиму дифракции можно переходить, изменяя оптическую силу промежуточной линзы. сокр., ПЭМ иначе трансмиссионная электронная микроскопия (англ. сокр., TEM ) — разновидность , в которой для получения увеличенного изображения или дифракционной картины используются электроны, прошедшие через образец.

Описание

Для исследований методом ПЭМ обычно используют образцы толщиной менее 500 нм (чаще менее 100–200 нм). Чем больше толщина образца, тем больше должно быть ускоряющее напряжение пучка электронов. Разрешение ПЭМ составляет десятки нанометров, однако существуют модификации метода ПЭМ, для которых разрешение может достигать 0,2 нм, а при применении специальных корректоров сферической абберации даже 0,05 нм. Эти разновидности часто рассматривают как самостоятельный метод исследования - просвечивающая электронная микроскопия высокого разрешения (high resolution transmission electron microscopy - HREM, HRTEM).

Электронный микроскоп с использованием дополнительных детекторов позволяет реализовать различные методики микроанализа образцов - , рентгеноспектральный микроанализ и др.

Авторы

  • Зотов Андрей Вадимович
  • Саранин Александр Александрович

Источник

  1. Terminology for nanoscale measurement and instrumentation, PAS133:2007. - BSI (British standart), 2007.

Просвечивающий электронный микроскоп (ПЭМ) – это электронно-оптический прибор, в котором наблюдается и регистрируется увеличенное в 50 – 10 6 раз изображение объекта. При увеличении в миллион раз грейпфрут вырастает до размеров Земли. Для этого вместо световых лучей используются пучки электронов, ускоренных до энергии 50 – 1000 кэВ в условиях высокого вакуума (10 -5 –10 -10 мм. рт. ст.). В просвечивающем электронном микроскопе проводится регистрация электронов, прошедших через ультратонкослойный образец. ПЭМ служит для получения информации о геометрических характеристиках, морфологии, кристаллографической структуре и локальном элементном составе объекта. Он позволяет изучать непосредственно тонкие объекты (толщиной до 1 мкм), островковые пленки, нанокристаллы, дефекты в кристаллических решетках с разрешением до 0,1 нм и косвенно (методом реплик) – поверхность массивных образцов с разрешением до 1 нм.

В материаловедении изучаются процессы роста и кристаллизации тонких пленок, структурные превращения в процессе термической обработки и механического воздействия. В полупроводниковой электронике электронный микроскоп используется для визуализации дефектов и тонкой структуры кристаллов и слоев. В биологии – позволяют увидеть и изучить строение отдельных молекул, коллоидов, вирусов, элементы клеток, структуру белков, нуклеиновые кислоты.

Принцип работы просвечивающего электронного микроскопа заключается в следующем (рис. 48). Расположенная в верхней части колонны электронная пушка – система, образованная катодом, анодом и нитью накала, является источником потока электронов. Нагреваемая до температуры 2200 – 2700 ºС нить из вольфрама испускает электроны, которые ускоряются сильным электрическим полем. Для создания такого поля катод 1 поддерживают под потенциалом порядка 100 кВ относительно анода 2 (находится под потенциалом земли). Поскольку электроны сильно рассеиваются молекулами воздуха в колонне микроскопа, создается высокий вакуум. Пройдя сетчатый анод, поток электронов фокусируется магнитными конденсорными линзами 3 в пучок (диаметр сечения 1 – 20 мкм) и попадает на исследуемый образец 4, установленный на мелкой сетке предметного столика. Его конструкция включает шлюзы, позволяющие ввод образца в вакуумную среду микроскопа с минимальным увеличением давления.

Первоначальное увеличение изображения осуществляется объективной линзой 5. Образец помещается в непосредственной близости от фокальной плоскости ее магнитного поля. Для получения большого увеличения и уменьшения фокусного расстояния линзы увеличивают числа витков и для катушки используют магнитопровод из ферромагнитного материала. Объективная линза дает увеличенное изображение объекта (порядка х100). Обладая большой оптической силой, она определяет предельно возможное разрешение прибора.

После прохождения сквозь образец часть электронов рассеивается и задерживается апертурной диафрагмой (толстая металлическая пластина с отверстием, которая устанавливается в задней фокальной плоскости объективной линзы – плоскости первичного дифракционного изображения). Не рассеянные электроны проходят через отверстие диафрагмы и фокусируются объективной линзой в предметной плоскости промежуточной линзы 6, которая служит для получения большего увеличения. Получение изображения объекта обеспечивается проекционной линзой 7. Последняя формирует изображение на люминесцентном экране 8, который светится под воздействием электронов и преобразует электронное изображение в видимое. Это изображение регистрируется фотокамерой 9 либо анализируется с помощью микроскопа 10.

Растровый просвечивающий электронный микроскоп (РПЭМ). Изображение формируется бегущим пучком, а не пучком, освещающим весь исследуемый участок образца. Поэтому требуется высокоинтенсивный источник электронов, чтобы изображение можно было зарегистрировать за приемлемое время. В РПЭМ высокого разрешения используются автоэлектронные эмиттеры высокой яркости. В таком источнике электронов создается очень сильное электрическое поле (~10 8 В/см) вблизи поверхности заостренной травлением вольфрамовой проволочки очень малого диаметра, благодаря чему электроны легко покидают металл. Интенсивность свечения (яркость) такого источника почти в 10 000 раз больше, чем источника с нагреваемой вольфрамовой проволокой, а испускаемые им электроны могут быть сфокусированы в пучок диаметром около 0.2 нм.

Исследования в РПЭМ проводятся на сверхтонких образцах. Электроны, испускаемые электронной пушкой 1, ускоряясь сильным электрическим полем анода 2, проходят через него и фокусируются магнитной линзой 3 на образец 5. Далее сформированный таким образом электронный пучок проходит сквозь тонкий образец почти без рассеяния. При этом с помощью отклоняющей магнитной системы 4 электронный пучок последовательно отклоняется на заданный угол от первоначального положения и сканирует поверхность образца.

Электроны, рассеянные на углы более нескольких градусов без замедления, регистрируются, попадая на кольцевой электрод 6, расположенный под образцом. Сигнал, снимаемый с этого электрода, сильно зависит от атомного номера атомов в той области, через которую проходят электроны, – более тяжелые атомы рассеивают больше электронов в направлении детектора, чем легкие. Если электронный пучок сфокусирован в точку диаметром менее 0.5 нм, то можно получить изображение отдельных атомов. Электроны, не претерпевшие рассеяния в образце, а также электроны, замедлившиеся в результате взаимодействия с образцом, проходят в отверстие кольцевого детектора. Энергетический анализатор 7, расположенный под этим детектором, позволяет отделить первые от вторых. Потери энергии, связанные с возбуждением рентгеновского излучения или выбиванием вторичных электронов из образца, позволяют судить о химических свойствах вещества в области, через которую проходит электронный пучок.

Контраст в ПЭМ обусловлен рассеянием электронов при прохождении электронного пучка через образец. Одни из прошедших через образец электронов рассеиваются из-за столкновений с ядрами атомов образца, другие – из-за столкновений с электронами атомов, а третьи проходят, не претерпевая рассеяния. Степень рассеяния в какой-либо области образца зависит от толщины образца в этой области, его плотности и средней атомной массы (числа протонов) в данной точке.

Разрешающая способность ЭМ определяется эффективной длиной волны электронов. Чем больше ускоряющее напряжение, тем больше скорость электронов и тем меньше длина волны, а значит, выше разрешение. Значительное преимущество ЭМ в разрешающей способности объясняется тем, что длина волны электронов намного меньше длины волны света.

Для проведения локального спектрального анализа элементного состава рентгеновское характеристическое излучение из облучаемой точки образца регистрируется кристаллическим или полупроводниковым спектрометрами. Кристаллический спектрометр с помощью кристалла-анализатора разлагает с высоким спектральным разрешением рентгеновское излучение по длинам волн, перекрывая диапазон элементов от Be до U.


© 2024
uguseina18.ru - Бизнес. Идеи. Заработок. Выбор ниши. Оборудование